Delivery of a transforming growth factor β-1 plasmid to mesenchymal stem cells via cationized Pleurotus eryngii polysaccharide nanoparticles
نویسندگان
چکیده
The objective of this study was to investigate the use of cationized Pleurotus eryngii polysaccharide (CPEPS) as a nonviral gene delivery vehicle to transfer plasmid DNA encoding transforming growth factor beta-1 (pTGF-β1) into mesenchymal stem cells (MSCs) in vitro. Crude P. eryngii polysaccharide was purified, and then cationized by grafting spermine onto the backbone of the polysaccharide. Agarose gel electrophoresis, transmission electron microscopy, and a Nano Sense Zetasizer (Malvern Instruments, Malvern, UK) were used to characterize the CPEPS-pTGF-β1 nanoparticles. The findings of cytotoxicity analysis showed that when the nanoparticles were formulated with a CPEPS/pTGF-β1 weight ratio ≥ 10:1, a greater gel retardation effect was observed during agarose gel electrophoresis. The CPEPS-pTGF-β1 nanoparticles with a weight ratio of 20:1, respectively, possessed an average particle size of 80.8 nm in diameter and a zeta potential of +17.4 ± 0.1 mV. Significantly, these CPEPS-pTGF-β1 nanoparticles showed lower cytotoxicity and higher transfection efficiency than both polyethylenimine (25 kDa) (P = 0.006, Student's t-test) and Lipofectamine(TM) 2000 (P = 0.002, Student's t-test). Additionally, the messenger RNA expression level of TGF-β1 in MSCs transfected with CPEPS-pTGF-β1 nanoparticles was significantly higher than that of free plasmid DNA-transfected MSCs and slightly elevated compared with that of Lipofectamine 2000-transfected MSCs. Flow cytometry analysis demonstrated that 92.38% of MSCs were arrested in the G1 phase after being transfected with CPEPS-pTGF-β1 nanoparticles, indicating a tendency toward differentiation. In summary, the findings of this study suggest that the CPEPS-pTGF-β1 nanoparticles prepared in this work exhibited excellent transfection efficiency and low toxicity. Therefore, they could be developed into a promising nonviral vector for gene delivery in vitro.
منابع مشابه
Angelica sinensis polysaccharide nanoparticles as novel non-viral carriers for gene delivery to mesenchymal stem cells.
UNLABELLED This study centers on the use of a nanoparticle based on the polysaccharide from Angelica sinensis (ASP) as an efficient and safe non-viral gene vector. After modification with branched low molecular weight polyethylenimine (1200 Da), the cationized ASP (cASP) was combined with the plasmid encoding transforming growth factor-beta 1 (TGF-β1) to form a spherical nano-scaled particle (i...
متن کاملEfficient gene delivery to human umbilical cord mesenchymal stem cells by cationized Porphyra yezoensis polysaccharide nanoparticles
This study centered on an innovative application of Porphyra yezoensis polysaccharide (PPS) with cationic modification as a safe and efficient nonviral gene vector to deliver a plasmid encoding human Wnt3a (pWnt3a) into human umbilical cord mesenchymal stem cells (HUMSCs). After modification with branched low-molecular-weight (1,200 Da) polyethylenimine, the cationized PPS (CPPS) was combined w...
متن کاملEncapsulation of plasmid DNA in calcium phosphate nanoparticles: stem cell uptake and gene transfer efficiency
BACKGROUND The purpose of this study was to develop calcium phosphate nanocomposite particles encapsulating plasmid DNA (CP-pDNA) nanoparticles as a nonviral vector for gene delivery. METHODS CP-pDNA nanoparticles employing plasmid transforming growth factor beta 1 (TGF-β1) were prepared and characterized. The transfection efficiency and cell viability of the CP-pDNA nanoparticles were evalua...
متن کاملPreparation of cationized polysaccharides as gene transfection carrier for bone marrow-derived mesenchymal stem cells.
The objective of this study is to prepare a non-viral carrier of gene transfection from various polysaccharides and evaluate the feasibility in gene expression for mesenchymal stem cells (MSCs). Various amounts of spermine were chemically introduced into pullulan, dextran and mannan with a molecular weight of around 40 000 or pullulan with different molecular weights to prepare cationized polys...
متن کاملAssay of Tgf-β And B-Fgf on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells in Wound Healing in a Murine Model
Purpose: Effects of TGF-b and b-FGF on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells In Wound Healing in a Murine Model.Materials and Methods: Peripheral blood mesenchymal stem cells (PBMSCs) and bone marrow stem cells (BMSCs) cultured in media with transforming growth factor-beta (TGF-b) and basic fibroblast growth factor (b-FGF). Stem cells labeled with...
متن کامل